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Abstract 

This report describes the requirements for utilizing bidirectional scattering distribution function (BSDF) 
measurements produced by the PAB-Opto goniophotometer and similar devices in simulation tools such as 
Radiance, and describes progress to date in implementing these methods.  An interpolation technique has 
been identified for resampling the measured data, and an initial implementation has been produced.  Work 
continues on improving this technique and software so it may be employed in a streamlined process for 
reducing BSDF measurements to a usable form and distributed as variable-resolution XML data.  This data 
may then be employed by lighting simulation software to model complex fenestration systems. 

 

Introduction 

The challenge is that BSDF measurements are of necessity sparse, irregular, and incomplete, whereas 
simulation software requires a full description of this 4-dimensional function blanketing every incident and 
outgoing direction.  Simple approaches such as bilinear interpolation fail to capture BSDF behavior from 
sparse measurements, as they are unable to track specular lobes that rotate in the output with changing 
incident directions [BvdPPH11].  A more sophisticated data reduction technique is required. 

A common approach is to fit the measured data to a mathematical BSDF model [War92], but this works 
only for “typical” surface materials, failing for exotic or purpose-designed materials such as those 
employed in complex fenestration systems.  Our goal is to model arbitrary BSDFs, without resorting to a 
model that assumes a particular behavior. 

To date, we have only measured isotropic materials at relatively low sampling resolution (i.e., 145 Klems 
directions).  Because isotropic BSDFs are invariant to rotation about the surface normal, a single plane of 
incident directions is sufficient to fully characterize their behavior.  However, sharp peaks in the output will 
not be captured using the “full Klems” basis, which averages angles within 10° (approx.) regions.  Moving 
to a higher-resolution basis is prohibitive, since it requires denser measurements over the entire 
hemisphere, rather than simply near the specular peaks. 

The PAB-Opto goniophotometer is capable of changing its measurement density near specular peaks, 
which makes it an ideal device for capturing variable-resolution BSDF representations such as the tensor 
tree described in [Ward et al. 2012].  However, this leaves open the problem of adequately sampling the 
incident directions.  Because outgoing peaks track incident radiation directions, even isotropic materials 
must have their incident angles sampled at the maximum output resolution to capture the highlight 
movement.  This becomes impractical very quickly, since each incident measurement takes an hour or so to 
complete.  For anisotropic materials, covering the entire incident hemisphere at this maximum resolution 
would require months or years to measure a single surface. 

The goal of this work is to identify an interpolation method that takes the sparse, irregular samples 
produced by the PAB-Opto goniophotometer, and produces a complete, variable-resolution BSDF 
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representation sufficient to simulate the measured material with high fidelity.  The method must work for 
anisotropic as well as isotropic materials, and will be employed as a data reduction step between the raw 
measurement capture and the sharing of data in a standard XML format.  Thus far, we have implemented 
an experimental version of the interpolation software, and are in the process of tuning a final version for 
internal use.  Upon further testing and validation, the software will be shared with other measurement labs, 
which should greatly improve the availability of BSDF data for simulation. 

Advanced BSDF Interpolation 

A survey of reflectance measurement and reduction techniques led us to only one method that addresses 
our problem of interpolating BSDF data [BvdPPH11].  However, the authors had only considered the case 
of interpolating between similar BRDFs, which is not the same as interpolating portions of a sparsely 
sampled BRDF.  While it was clear that the method could be extended, it was already fairly complicated 
and expensive, so we knew such an extension would not be straightforward.  Luckily, the principal author 
of the paper, Nicolas Bonneel, was interested and willing to help us out. 

The identified method, Lagrangian mass transport, processes a BSDF in the following stages: 

1. Divide the incident hemisphere using Delaunay triangulation on measured directions. 
2. Interpolate outgoing BSDF at each incidence with a sum of Gaussian radial basis 

functions, ∑ 𝐺𝑗(𝑟(𝜃𝑜,𝜑𝑜))𝑗 . 
3. Along each edge of the Delaunay mesh, compute the optimal mass transport matrix that 

moves one set of radial basis functions to another. 
4. For each desired incident direction during interpolation, compute a new set of radial 

basis functions based on the three surrounding vertices of the corresponding triangle. 
5. Use this new RBF sum to compute all desired outgoing directions. 

Each of the above steps brings with it challenges, which we discuss in the following subsections. 

 

Delaunay Triangulation on the Sphere 

By definition, a Delaunay triangulation ensures that no point is contained within the circumcircle of any 
triangle.  For points on a sphere, the Delaunay triangulation is congruent to the convex hull, which is the 
minimal volume convex polyhedron enclosing all points.  Using a Delaunay mesh minimizes errors from 
interpolating distant incident measurements.  We are currently testing a simplified method of Delaunay 
triangulation on the sphere that does not require iterative edge-swaps.  An example result over a quarter 
sphere is shown in Figure 1. 
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Figure 1.  Delaunay mesh from PAB-Opto incident measurements of sawtooth metal profile. 

 

Radial Basis Function Representation 

A given set of outgoing measurements on the hemisphere can be interpolated using a sum of Gaussian 
lobes of differing center, magnitude and spread.  These are called Radial Basis Functions (RBFs) because 
their evaluation reduces the two outgoing directions (θ and φ) into a single, radial value, which is the 
distance from the center of a given lobe, 𝐺𝑗(𝑟(𝜃𝑜,𝜑𝑜)).  Computing an optimal set of RBFs is difficult due 
to the non-uniform sampling of the PAB-Opto device.  (See Appendix A.)  The first step is therefore to 
reduce the original samples to a more regularly-spaced sample set, which can serve as the centroids of our 
Gaussian lobes.  The final step is then to optimize the lobe magnitudes and spreads to best fit the original 
data, as shown in Figure 2. 
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Figure 2.  A radial basis function interpolation of outgoing BSDF directions for a single incident direction.  
Yellow points indicate the original measurements.  Pink points are the resampled centroids for the Gaussian 
lobes.  The green surface is the sum of our radial basis functions, approximating the BSDF. 

Lagrangian Mass Transport 

The most difficult and expensive step in the calculation is minimizing the Earth Mover’s Distance (EMD) 
for the migration of RBF lobes from one incident direction along a Delaunay edge to its neighbor.  This is 
critical to maintaining the character of the BSDF, since it allows the lobes to shift direction rather than to 
fade in and out as typical of other interpolation schemes. 

Given two RBF outgoing distributions (i.e., two sets of Gaussian lobes that sum to the BSDF for those 
incident angles), we start by computing the “cost matrix,” which assigns a price for moving a unit of energy 
between any two Gaussian lobes.  This is simply the distance between the two lobes plus the difference in 
their spread in our implementation.  The migration computation then proceeds in steps, where a bucket of 
energy is moved along the cheapest route until all the mass is accounted for.  Our hope is that this direct 
calculation will be less expensive than the network optimization problem solved by [BvdPPH11], which 
proved intractable for typical data set sizes.  Testing continues on this module. 
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Interpolating RBF for New Incident Direction 

Since our goal is to evaluate our interpolated function at arbitrary incident and exiting directions, we need a 
method for arriving at an RBF representation for any angle of incidence.  Initially, we believed that the 
Lagrangian Mass Transport problem would need to be solved again for each interpolated incidence as well 
as every edge in the mesh (Figure 1), and this proved to be very expensive, indeed.  Subsequently, we 
arrived at a formula for interpolating the RBF at any point within a mesh triangle using the edge migration 
matrices alone.  This makes RBF interpolation fast and efficient, but further testing is required to verify the 
method. 

Evaluating Interpolated RBF 

This step is the simplest and the quickest, which is fortunate since the interpolated RBF must be evaluated 
hundreds of thousands of times in creating the final BSDF representation.  In effect, a function similar to 
the green surface shown in Figure 2 is computed for each interpolated incident angle, and the peaks in this 
distribution are sent to a separate data reduction program.  This separate program (rttree_reduce, fully 
developed and tested), then creates the final variable-resolution BSDF data included in our XML output. 

 

Implementation and Testing 

The initial implementation of our interpolation method built and relied heavily on the code developed by 
Nicolas Bonneel for his 2011 paper.  Nicolas did most of this implementation, with some help in testing 
from Murat Kurt, the other co-author of [Ward et al. 2012].  This code base built upon multiple libraries 
developed by Nicolas and third parties, and was deemed too unwieldy for a final deliverable.  Plus, there 
were some outstanding bugs that Nicolas did not have time to track down, as his work was taking a new 
direction as he moved to a different institution.  The results presented in our paper present the ideas and the 
not-quite-working output based on BRDF measurements from [NDM05]. 

It was therefore decided to start fresh with a new implementation, customized to our particular problem and 
not reliant on third-party software.  This is the code we have briefly described in this report, which is 
currently undergoing testing.  Our plan is to complete this development effort in the next two months and 
start reducing additional BSDF measurements over the course of this fiscal year. 

There is another issue we have yet to fully address, which is incorporating symmetry.  As shown in 
Figure 1, many measurement sets rely on symmetry to complete the data.  The sawtooth profile that was 
measured for this dataset has left-right symmetry that makes half of the incident directions redundant.  (See 
Figure 3.)  We can save time and effort by measuring only half of the incident directions, as was done by 
Peter Apian-Bennewitz when he provided this data.  We then need a means to detect or specify this 
symmetry when performing our interpolation.  We have already implemented automatic detection for 
isotropic (i.e., radially symmetric) data.  We plan to add detection of bilateral and quadrilateral symmetry, 
handling each case appropriately. 

 
Figure 3.  Sawtooth profile material used in our BRDF measurement example. 
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Summary 

We have identified and developed a new method for interpolating measured BSDF data that takes a set of 
irregular, sparsely sampled points and produces a continuous function.  This function may then be 
resampled as appropriate for the desired, final representation.  In the case of a measured material with 
strong specular peaks, this might be an XML file describing a tensor tree structure that is suitable for ray-
traced simulation.  This will allow arbitrary, anisotropic materials to be used in the simulation and design of 
complex fenestration systems. 

Next Steps 

Work is not completed on this task.  Although the code is written, it has not undergone the necessary 
testing.  Also, the cost of computing the migration paths from one incident angle to another is high, and we 
need to leverage parallel computation to reduce running times to something reasonable.  Even with 
multiprocessing, it may take nearly as long to reduce the data as it does to collect it.  A method for 
recording the interpolating matrix would therefore be of value, and this will be added to the task list for the 
next fiscal year.  By recording the interpolant, we will be able to later resample the data for any desired 
BSDF representation without compromise.  Finally, extensive testing and validation must be performed on 
the method. 
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Appendix A 

The attached set of measured BRDF data corresponds to the metal profile shown in Figure 3.  
Measurements were conducted by Peter Apian-Bennewitz on his PAB-Opto device with sample rotator.  
Higher resolution measurements were taken near the specular peaks, which are subdued in these renderings 
because the values have been multiplied by the cosine of the exiting polar angle.  The magenta dots are the 
actual points measured, showing the inherent non-uniformity of the data capture. 
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